3.212 \(\int \cot (c+d x) \csc ^3(c+d x) (a+a \sin (c+d x))^3 \, dx\)

Optimal. Leaf size=65 \[ -\frac{a^3 \csc ^3(c+d x)}{3 d}-\frac{3 a^3 \csc ^2(c+d x)}{2 d}-\frac{3 a^3 \csc (c+d x)}{d}+\frac{a^3 \log (\sin (c+d x))}{d} \]

[Out]

(-3*a^3*Csc[c + d*x])/d - (3*a^3*Csc[c + d*x]^2)/(2*d) - (a^3*Csc[c + d*x]^3)/(3*d) + (a^3*Log[Sin[c + d*x]])/
d

________________________________________________________________________________________

Rubi [A]  time = 0.0707239, antiderivative size = 65, normalized size of antiderivative = 1., number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.111, Rules used = {2833, 12, 43} \[ -\frac{a^3 \csc ^3(c+d x)}{3 d}-\frac{3 a^3 \csc ^2(c+d x)}{2 d}-\frac{3 a^3 \csc (c+d x)}{d}+\frac{a^3 \log (\sin (c+d x))}{d} \]

Antiderivative was successfully verified.

[In]

Int[Cot[c + d*x]*Csc[c + d*x]^3*(a + a*Sin[c + d*x])^3,x]

[Out]

(-3*a^3*Csc[c + d*x])/d - (3*a^3*Csc[c + d*x]^2)/(2*d) - (a^3*Csc[c + d*x]^3)/(3*d) + (a^3*Log[Sin[c + d*x]])/
d

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \cot (c+d x) \csc ^3(c+d x) (a+a \sin (c+d x))^3 \, dx &=\frac{\operatorname{Subst}\left (\int \frac{a^4 (a+x)^3}{x^4} \, dx,x,a \sin (c+d x)\right )}{a d}\\ &=\frac{a^3 \operatorname{Subst}\left (\int \frac{(a+x)^3}{x^4} \, dx,x,a \sin (c+d x)\right )}{d}\\ &=\frac{a^3 \operatorname{Subst}\left (\int \left (\frac{a^3}{x^4}+\frac{3 a^2}{x^3}+\frac{3 a}{x^2}+\frac{1}{x}\right ) \, dx,x,a \sin (c+d x)\right )}{d}\\ &=-\frac{3 a^3 \csc (c+d x)}{d}-\frac{3 a^3 \csc ^2(c+d x)}{2 d}-\frac{a^3 \csc ^3(c+d x)}{3 d}+\frac{a^3 \log (\sin (c+d x))}{d}\\ \end{align*}

Mathematica [A]  time = 0.0191501, size = 57, normalized size = 0.88 \[ a^3 \left (-\frac{\csc ^3(c+d x)}{3 d}-\frac{3 \csc ^2(c+d x)}{2 d}-\frac{3 \csc (c+d x)}{d}+\frac{\log (\sin (c+d x))}{d}\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[Cot[c + d*x]*Csc[c + d*x]^3*(a + a*Sin[c + d*x])^3,x]

[Out]

a^3*((-3*Csc[c + d*x])/d - (3*Csc[c + d*x]^2)/(2*d) - Csc[c + d*x]^3/(3*d) + Log[Sin[c + d*x]]/d)

________________________________________________________________________________________

Maple [A]  time = 0.04, size = 64, normalized size = 1. \begin{align*} -3\,{\frac{{a}^{3}}{d\sin \left ( dx+c \right ) }}+{\frac{{a}^{3}\ln \left ( \sin \left ( dx+c \right ) \right ) }{d}}-{\frac{{a}^{3}}{3\,d \left ( \sin \left ( dx+c \right ) \right ) ^{3}}}-{\frac{3\,{a}^{3}}{2\,d \left ( \sin \left ( dx+c \right ) \right ) ^{2}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x)

[Out]

-3/d*a^3/sin(d*x+c)+a^3*ln(sin(d*x+c))/d-1/3/d*a^3/sin(d*x+c)^3-3/2/d*a^3/sin(d*x+c)^2

________________________________________________________________________________________

Maxima [A]  time = 1.0883, size = 78, normalized size = 1.2 \begin{align*} \frac{6 \, a^{3} \log \left (\sin \left (d x + c\right )\right ) - \frac{18 \, a^{3} \sin \left (d x + c\right )^{2} + 9 \, a^{3} \sin \left (d x + c\right ) + 2 \, a^{3}}{\sin \left (d x + c\right )^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="maxima")

[Out]

1/6*(6*a^3*log(sin(d*x + c)) - (18*a^3*sin(d*x + c)^2 + 9*a^3*sin(d*x + c) + 2*a^3)/sin(d*x + c)^3)/d

________________________________________________________________________________________

Fricas [A]  time = 1.70971, size = 221, normalized size = 3.4 \begin{align*} -\frac{18 \, a^{3} \cos \left (d x + c\right )^{2} - 9 \, a^{3} \sin \left (d x + c\right ) - 20 \, a^{3} - 6 \,{\left (a^{3} \cos \left (d x + c\right )^{2} - a^{3}\right )} \log \left (\frac{1}{2} \, \sin \left (d x + c\right )\right ) \sin \left (d x + c\right )}{6 \,{\left (d \cos \left (d x + c\right )^{2} - d\right )} \sin \left (d x + c\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="fricas")

[Out]

-1/6*(18*a^3*cos(d*x + c)^2 - 9*a^3*sin(d*x + c) - 20*a^3 - 6*(a^3*cos(d*x + c)^2 - a^3)*log(1/2*sin(d*x + c))
*sin(d*x + c))/((d*cos(d*x + c)^2 - d)*sin(d*x + c))

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)**4*(a+a*sin(d*x+c))**3,x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.23809, size = 80, normalized size = 1.23 \begin{align*} \frac{6 \, a^{3} \log \left ({\left | \sin \left (d x + c\right ) \right |}\right ) - \frac{18 \, a^{3} \sin \left (d x + c\right )^{2} + 9 \, a^{3} \sin \left (d x + c\right ) + 2 \, a^{3}}{\sin \left (d x + c\right )^{3}}}{6 \, d} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)*csc(d*x+c)^4*(a+a*sin(d*x+c))^3,x, algorithm="giac")

[Out]

1/6*(6*a^3*log(abs(sin(d*x + c))) - (18*a^3*sin(d*x + c)^2 + 9*a^3*sin(d*x + c) + 2*a^3)/sin(d*x + c)^3)/d